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Abstract
Motion-controlled robots allow a user to interact with a

remote real world without physically reaching it. By con-

necting cyberspace to the physical world, such interactive

teleoperations are promising to improve remote education,

virtual social interactions and online participatory activi-

ties. This work builds up a motion-controlled robotic arm

framework and proposes to verify who is controlling the

robotic arm by examining the robotic arm’s behavior. We

show that a robotic arm’s motion inherits its human con-

troller’s behavioral biometric in interactive control scenarios.

Furthermore, we derive the unique robotic motion features

to capture the user’s behavioral biometric embedded in the

robot motions and develop learning-based algorithms to ver-

ify the robotic arm user. Extensive experiments show that

our system achieves high accuracy to distinguish users while

using the robot’s behaviors.
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1 Introduction
Consumer robotic arms have been increasingly used for a

multitude of applications for providing augmented inter-

actions, including remote education, health care, research,
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Figure 1. The motion-controlled robotic arm platform to

facilitate interactive control.

industrial control and social network [2]. By controlling a

robotic arm, the user is able to conduct mission-critical and

high-risk applications in the real world remotely without

physically reaching it. However, because a motion-controlled

robot system involves sensors, actuators, networks and com-

puting devices at two ends, it suffers from more severe se-

curity threats from both cyberspace and the physical world.

More specifically, an adversary might intrude and gain the

system access by exploiting any of the above interfaces,

which makes the defense hard. Current access control of

the robot system is achieved through traditional user-end

authentications, but these methods are independent of ro-

bot control, and could not guarantee that the robotic arm is

consistently under the control of the enrolled user(s). The

adversary might also fool the authentication at the user end

by forging the user’s authentication entry. To secure the

robot system access, we propose to continue verifying the

user after the robot system is logged in, and the verification

is done by examining the robot’s behavior.

A motion-controlled robotic arm system comprises two

ends, which are connected by a local or wide area network.

We build up a real motion-controlled robot system as shown

in Figure 1. The user end is responsible for tracking the user’s

motions and issuing the corresponding control commands.

The robotic arm end receives and executes the commands
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Figure 2. The motion-controlled robotic arm framework

with the robot behavior authentication at the robot end.

to perform tasks. In the meanwhile, the user observes the

robotic arm’s movement feedback and adjusts his/her hand

motion accordingly for the interactive control, which facili-

tates performing fine tasks. Due to the individually unique

human arm structures, strengths and motion behaviors, the

robotic arm exhibits the behaviors highly correlated with

the user. We thus design the robotic arm-end user authenti-

cation approach, which tracks the robotic arm’s movements

to verify the robot-inherited human behavior. This work,

for the first time, demonstrates that the robotic arm could

inherit much of its controller’s behavioral information in

the interactive control environment. In particular, we derive

unique robotic motion features to capture the user’s behav-

ioral characteristics that are embedded in the robotic arm’s

motions. Our contributions are summarized as follows:

• We develop a user authentication approach for motion-

controlled robotic arm systems based on examining

the robotic arm’s movement behavior.

• This work demonstrates that people’s motion behav-

iors in interactive control scenarios are individually

unique. Moreover, the robotic arm under control in-

herits such behaviors to show the per-user distinctive

robot behaviors.

• We build up a real motion-controlled robotic arm plat-

form and design learning-based algorithms to both

recognize the type of task the robot is performing and

verify the identity of the robot’s user.

2 System Design
Figure 2 shows the framework of our system, which consists

of a user end for the real-time motion capture and a robotic

arm end for executing control commands.

Robot Platform. Our motion-controlled robotic arm plat-

form maps human motion to robotics movements in real-

time. At the user end, six motion capture cameras (OptiTrack

Figure 3. Comparison of the user’s hand and the robotic arm

end-effector raw trajectories of drawing a “triangle”. Both

are obtained by OptiTrack cameras.

Prime 13) are deployed in a 5m by 5m circular area to capture

the user’s hand movements. The user is required to wear

a glove attached with passive reflective markers, which al-

lows the motion capture system to obtain high precision of

tracking the position and orientation of the human’s hands

in 6-DOF, with positional errors less than +/-0.20mm and

rotational errors less than 0.5 degrees [3]. The captured hand

motions are further transformed into control command se-

quences, which are sent to the robot end to execute.

An industrial robot (Franka Emika Panda) is used at the

robotic arm end [1]. The robotic arm has 7 DOF achieving

up to 2 m/s end-effector speed and +/- 0.1 mm repeatabil-

ity, which ensures the accurate replication of human hand

movements. Consider the significant differences of the physi-

ologies, kinematic characters, joint numbers and arm lengths

between robotic arms and human arms, we design a PID-

based path planning algorithm to relax the mapping con-

straints between the human hand and end-effector of robots

to generate smoothly, continuously mimicry-based control

trajectories, which converts the received joint angle values

into a series of angular velocity commands within the tra-

jectory limitations. In addition, to enable the robotic arm

to follow hand movements, we set the robotic arm and the

motion capture system in the same coordination system, as

illustrated in Figure 3. In themeanwhile, the user receives the

visual feedback of the robotic arm’s movement to perform

the interactive control, which forms a control loop.

A commercial Ethernet is used to connect the two ends and

facilitate the data transmission.We utilize the User Datagram

Protocol (UDP) to support the high packet delivery rate. This

protocol also reduces the queuing delay at the transmitter

side and improves real-time tracking performance.

User Authentication.When accessing the robotic arm, the

user enters the login account and password at the user end.

Once the credentials are accepted, the user can manipulate

the robotic arm with hand motions in real-time. Our authen-

tication approach runs once the login is successful. Unique
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Figure 4. The DTW distances of the robotic arm motion

features (e.g., trajectory and acceleration) between users.

robotic motion features are derived to capture the robotic

arm’s unique behavior associated with the user’s behavioral

biometric, which are fed into our Dynamic Time Warping

(DTW) based algorithms, where task recognition and user

identification are performed successively. When registering

the system and using the robotic arm for the first time, the

user’s profile is created based on the robotic arm’s motion

behavior. When the user accesses the robotic arm later, the

current robotic arm behavior is compared with the user’s

profile to verify whether the user’s identity is as claimed.

Based on the verification result, the robotic arm would con-

tinue to operate or reject the access and halt. If the access

is rejected, the framework requires the re-login, and chal-

lenge/security questions and message authentication codes

could be further required. The traditional login credentials

and robot-behavior verification form the two security layers

for the motion-controlled robotic arm framework.

3 Preliminary Results
Feasibility. We conduct a feasibility study to investigate if

a robotic arm can inherit the user’s behavioral information.

The participants are asked to operate the robotic arm to

repeatedly draw an “Δ” in the air 40 times using our platform.

As shown in Figure 3, the robotic arm follows the path of the

user’s hand and draws a similar “triangle” curve. Figure 4

presents the DTW distances of two motion features (i.e.,

trajectory and acceleration) between user 1 and five users

(user 1 to 5). We find that the DTW distances of user 1’s own
robotic arm motions are much smaller than the cross-user

DTW distances. The behavioral consistency and uniqueness

demonstrated above confirm that the robotic arm carries a

portion of the user’s behavioral biometrics, which can be

used to distinguish users.

Experiment. Then we recruit 10 participants for the inter-

active control experiments, who are all first-time users of the

platform. Before experiments, the users have 5 minutes to

be familiar with the platform by operating the robotic arm.

During data collection, the participants are asked to control

the robotic arm to write letters, draw curves in the air and

S W Z
ABC

Circ
le

Star

Tria
ngle

Pointin
g

Pushing

Stirr
ing

Predicted Class

S

W

Z

ABC

Circle

Star

Triangle

Pointing

Pushing

Stirring

T
ru

e
 C

la
s
s

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

Figure 5. Confusion matrix of recognizing robot tasks.
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Figure 6. Performance of user verification.

perform some basic operations. Each participant repeats 40

times per task.

Authentication. Figure 5 shows the confusion matrix of the

task classification. Our approach achieves 100% task recog-

nition accuracy, this result indicates that our robotic motion

features capture the differences among tasks well and the

weighted DTW-based classifier tolerates the network delays

and the user’s varying hand movement speeds when recog-

nizing a task. We alternatively select each participant to be

the target legitimate user and use the corresponding user

template for verification. Figure 6 presents the average ac-

curacy for each of the 10 participants, all the participants

achieve over 94% accuracy, while the median accuracy is

94.5%. Some participants reach around 95% accuracy. The

results confirm the effectiveness of our approach to verify

users via the robot behaviors.
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