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ABSTRACT
Behavioral biometrics has emerged as an important security factor
for user authentication. Compared to static biometrics (e.g., faces,
irises, and fingerprints), using human motion behaviors for authen-
tication causes lower concern about privacy abuse, and behavior
biometrics are shown hard to be replicated by humans. In-air 3D sig-
nature is one representative of behavioral biometrics. Specifically, a
user’s hand movements can be tracked by visual or wireless sensors
for contact-free signature authentication, where both the fingertip
trajectory and the dynamic motion features are verified to provide
enhanced security. However, with the advancement of 3D printing
and robot technology, we find that 1) existing hand-tracking inter-
faces (e.g., Leap Motion and Google MediaPipe) are easily tricked
by a fake hand, and 2) a robotic arm can reproduce a user’s in-air
3D signature with high similarity regarding both trajectory and
motion behaviors. Thus, this work investigates the security of in-air
signatures under robot-level replays and proposes to extend the
signature verification from a single-point fingertip to multiple hand
joints for enhanced security. We develop the hand skeleton-based
3D signature verification system, which can be deployed on any
single camera devices (2D or 3D). The key insight is that current
robots could hardly replicate the minute and unique inter-joint
motions of a user. In particular, we track the hand skeleton using a
single camera and reconstruct/draw the trajectories of its joints in
a virtual 3D space, using the color gradients to represent time-lapse
and using varying line widths to describe joint significance. Based
on that, we extract the three-view skeleton signatures and inter-
joint motion features and develop a convolutional neural network
for verification. Extensive experiments show that our system not
only achieves high authentication performance but also effectively
mitigates robot-level replay attacks.
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Figure 1: Vulnerability of current commodity hand-tracking
interfaces (easily fooled with a silicone fake hand).

1 INTRODUCTION
Behavioral biometrics is an emerging field in user authentication
approaches, which focuses on analyzing a user’s dynamic motion
characteristics of moving an arm/hand [18, 46], walking [12, 34],
head-shaking, typing [5, 17], and signing [30]. Compared to the
widely used PIN/password and static biometrics, behavioral bio-
metrics are more secure and more convenient to use for authen-
tication [2]. In particular, human motion data can be readily cap-
tured through the pervasively deployed visual, inertial, and wireless
sensors. Furthermore, behavioral motion features are inherently
dynamic, presenting considerable obstacles for attackers to mimic
or reproduce [39]. Compared to facial and fingerprint biometrics,
behavioral biometrics also minimize privacy erosion concerns.

In-air signature is a prominent example of behavioral biometric
authentication, which presents high degrees of motion freedom. It
not only retains the individual’s obligation inherent in a traditional
signature but also offers enhanced security by verifying both the
3D handwriting curves and the user’s signing behaviors. These be-
haviors are captured as a time series of motion features, including
velocity and acceleration [8, 24, 39]. In contrast to 2D signature
biometrics, in-air signature extends the user’s signing behavior into
the 3D space by adding a depth dimension. It also eliminates the
need for a writing surface, featuring non-contact and device-free
authentication service, which has a notable advantage amid the
COVID-19 Pandemic. Furthermore, there have been many commer-
cialized hand-tracking interfaces available on either a single RGB
or depth camera to support in-air signature verification [28, 40, 44].
We foresee the future expansion of its applications in the “meta-
verse”, whose market size is expected to grow more than 13 times in
10 years [13]. A VR user can now use bare hands to interact with the
device or sign in the virtual space to authorize a transaction rather
than cumbersomely entering passwords with handheld controllers.
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This work demonstrates that even the 3D in-air signature with
high motion freedom degrees could be forged by an adversary. We
reveal two security threats to current visual in-air signature authen-
tications: 1) Commercial hand-tracking interfaces such as Google
MediaPipe [44] and Leap Motion [40] are easily fooled by a fake
hand, as shown in Figure 1; 2) A low-cost commodity robotic arm
(≤ $1000) can precisely replay a user’s in-air signature with its
end effector as shown in Figure 2. The main reason is that current
hand-tracking solutions have never considered the threats from 3D
printing and motion-copy robots. They rely on hand-like shapes
to recognize/track a hand without liveness detection capabilities.
Moreover, the current 3D in-air signature is just a single-point co-
ordinate time series (e.g., fingertip), which can be easily reproduced
by a robotic arm’s end effector.

Rather than modifying the current hand-tracking interfaces, we
propose to extend the dimension of in-air signatures from a single
point to multiple hand joints and further leverage the hand’s kine-
matic structure motions to defeat robot replays. Our key insight
is that current robots are still not able to copy the minute inter-
joint motions of a user’s hand, which can be further leveraged to
derive joint-level behavioral biometric features. In particular, we
develop the hand skeleton-based 3D signature verification system.
The system takes the recordings of a single camera (2D or 3D) as
input and extracts the 3D coordinate time series of a hand’s multi-
joints for authentication. We design a novel representation of hand
skeleton motions, which reconstructs/draws the 3D trajectories of
hand joints in different colors, uses the color gradients to present
the time-lapse, and uses the line widths to describe the joint signifi-
cance. We next project the 3D trajectories on three virtual planes to
examine three different aspects of the hand skeleton-level signature
and derive the inter-joint motion features. We develop a Convo-
lutional Neural Network (CNN) model to analyze these biometric
features for authentication as well as mitigating the replay attacks
enabled by motion-copy robots.

Our contributions are summarized as follows:

• We identify two security issues of current in-air signature
verification systems, (1) the vulnerability of hand-tracking
interfaces to fake hands and (2) the behavioral biometric
replays achieved by low-cost commodity robots.

• After investigating the security of behavioral biometrics un-
der the emerging robot-replay threats, we propose a security-
enhanced in-air signature authentication system, which ex-
tends the traditional single-point signatures to the hand
skeleton signatures. We find that the minute inter-joint mo-
tion characteristics are unique to each user and also hard to
be reproduced by current robots.

• We design a novel approach to examine a single-camera
obtained hand skeleton signature with its three-view presen-
tations, where different colors are used to index each hand
joint, and color gradients and line widths are used to describe
the time information and the joint significance, respectively.
We further derive the inter-joint biometric features and de-
velop a convolutional neural network for authentication.

• We implement the system prototypes based on a regular RGB
camera and a depth camera, respectively, and build a robot
platform for launch replay attacks. Results show that our

Figure 2: Replaying a user’s in-air writing with a robotic arm.

system achieves a high performance in verifying users and
mitigating robot-level replays.

2 RELATEDWORK
Physiological biometrics focuses on the examination of identifiable
human body parts, such as facial patterns [26, 31], fingerprints [4, 9],
and irises [29]. However, the advancements in recording and re-
play technologies have made feasible the copy and reuse of such
static biometrics, which presents severe security risks. For exam-
ple, by leveraging 3D reconstruction and printing technologies, an
adversary can create a 3D mask [7] of the user’s face to fool face
recognition systems. Similarly, a fake fingertip [3] can be created
from the user’s latent fingerprint to pass the fingerprint scanners.
In contrast to static physiological biometrics, behavioral biomet-
rics focus on capturing the behavior characteristics of a user for
authentication, which are believed hard to be copied or reproduced
by an adversary. Emerging behavioral biometrics include hand ges-
tures [18, 46], gait patterns [12, 34], keystroke dynamics [5, 17],
and eye movements [45]. In-air 3D signature is a representative
example with high motion freedom degrees, which contains both
signature trajectories and signing behaviors.

Traditional signature verification treats the user’s signature as a
static image and analyzes its geometric shape [15]. Digital writing
pads and touchscreen devices further enable the recording of the
entire process of a user’s signing activity and obtain a 2D coordi-
nate time series of the user’s signature [14, 16, 34]. Based on that,
both the signature curve and the user’s signing behaviors, such
as velocity, acceleration, and pressure, can be used for authenti-
cation, which improves signature security with multiple feature
dimensions. In addition, the embedded motion sensors [20, 35] and
photoplethysmography sensor [33] on wrist-worn devices (e.g.,
smartwatches) can be used to further capture the user’s wrist/arm
motion behaviors beyond the writing surface.

In-air 3D signature introduces an additional depth dimension.
It eliminates the need for a writing surface to achieve contract-
free and maximizes the freedom of hand motions to obtain more
aspects of the user’s behavioral biometrics. A number of sensors
can be used for in-air signature authentication, including visual
sensors [8, 19, 39], inertial sensors [21, 23], acoustic sensors [37],
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Figure 3: The overview of our 3D hand skeleton signature
user authentication system.

and Radio Frequency (RF) signals [1, 25]. This work focuses on the
vision-based approaches due to the broad support by many commer-
cialized hand-tracking interfaces. The vision-based solutions can
be divided into two categories based on the type of camera used for
sensing. Regular RGB cameras have been utilized for in-air signa-
ture verification [8, 38], and Google MediaPipe is a commercialized
hand-tracking interface developed for these 2D cameras to capture
3D trajectories of the hand [19]. There are also many off-the-shelf
depth cameras, including the Kinect sensor [28] and Leap Motion,
which have been employed to verify users’ in-air signatures or hand
gestures [10, 22, 24, 39, 42]. We also find that the majority of in-air
signature works use Dynamic Time Warping (DTW) algorithms to
learn the user’s signature template for authentication [8, 19, 39],
while others use CNN and support vector machines.

Previous studies on in-air signatures uniformly highlight the
difficulty of an impersonation attacker mimicking a user’s dynamic
signing behaviors. However, only a few studies consider the po-
tential of replay attacks executed by robots. The latest work uses
a “Lego” robot to imitate the user’s swiping behaviors on a smart-
phone screen [36], which was a decade ago and did not consider
the more challenging in-air signature scenario, where the user has
high degrees of motion freedom. We find that the advancements
in robot techniques in the past decade have posed severe security
threats to behavioral biometric security. For example, a robot agent
can be taught to learn and reproduce human handwriting [43]. It
is further demonstrated that the end-effector of a robotic arm can
inherit the motion behaviors of the human controller’s hand [11].

It is thus imperative to investigate the security of in-air signatures
under the emerging robot threat and mitigate the security risk.

3 BACKGROUND AND SYSTEM MODELS
3.1 Vulnerability of Hand-tracking Interface
Commercially available visual hand-tracking interfaces are increas-
ingly being integrated into electronic mobile devices, enabling non-
contact hand motion tracking and in-air signatures. For instance,
Google MediaPipe can detect and track the user’s hand with 21
skeleton landmarks by using a single RGB camera (e.g., on laptops).
Though using a 2D camera, MediaPipe establishes a 3D coordinate
system with the palm center serving as the origin and estimates
each joint’s depth information using hand skeleton models. On the
other hand, Leap Motion utilizes stereo vision created by two in-
frared cameras to capture direct 3D hand movements. The sensing
data is further fed into a generic hand model to provide visual feed-
back. These technologies have been integrated into VR devices (e.g.,
Meta Quest [27]) for non-contact hand-tracking and cyber-physical
interactions. Based on these hand-tracking interfaces, there have
been many studies on extracting the user’s in-air signature for au-
thentication [8, 10, 19]. The in-air signatures are beginning to be
practically implemented in both mobile and VR applications [6, 32].

Almost all visual hand-tracking interfaces rely on recognizing
hand shapes in video frames. The in-air signature is typically ob-
tained by locating the index fingertip (or the palm center) and
logging its coordinate time series. It is more important to note that
these commercial interfaces address the occlusion or self-occlusion
of the user’s partial hand by using historical finger coordinates and
standard hand skeleton models [40, 44]. Thus, the 3D coordinates of
the index finger or palm center can be consistently obtained to en-
able complete in-air signature capture. However, we find that these
hand-tracking interfaces can be readily deceived by any hand-like
objects. We conduct an experiment by displaying a silicon hand to
Google MediaPipe and Leap Motion, respectively. Both interfaces
detect and track the hand as shown in Figure 1. Thus, the authen-
tication systems based on such hand-tracking interfaces could be
easily tricked and are not secure.

3.2 Potential Robot-level Replay Attacks
Robotic arms have replaced many human laborers in manufactur-
ing processes for decades. As they continue to decrease in cost,
their applications are no longer limited to the industry. It has been
shown that a robotic arm’s end-effector can reach anywhere a hu-
man hand reach, thus having the ability to repeat a user’s hand
motion trajectory. For example, a robotic agent can be instructed to
learn and reproduce a human’s handwriting trajectory [43]. More
than just reproducing a trajectory, robots also have the potential to
imitate a user’s motion behavior, which contains inherent individ-
ual motion dynamics, such as accelerations and velocities. It has
been demonstrated that a toy robot can mimic a user’s behaviors of
simple swiping on a smartphone touchscreen [36]. However, it is
still unclear whether a robotic arm could mimic the 3D in-air signa-
tures, which have high degrees of freedom and are more complex
to reproduce regarding both the trajectory and signing behavior.

To illustrate the feasibility of using robots to replay in-air sig-
natures, we record a user’s palm center movements of writing
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four characters in the air using a Leap Motion controller. A 5-DoF
PincherX 150 robotic arm is used to repeat the user’s writing. We
compare the location time series of the robot’s end-effector (re-
turned by the robot) with that of the original human writings (cap-
tured by Leap Motion). The comparisons across all four characters
in Figure 2 demonstrate the high replay capability of the robotic
arm. In particular, the end-effector presents the trajectories closely
aligned with the user’s handwriting curves. Moreover, the human
hand motion is copied point-by-point, which may present high por-
tions of the user’s motion behaviors, such as similar accelerations
and velocities. If attaching a fake hand to the robotic arm to attack
existing hand-tracking interfaces, the current in-air signatures are
at high risk to be broken.

3.3 System Overview
This study proposes a 3D hand skeleton signature verification al-
gorithm to improve in-air signature security without changing
the signing process. The algorithm achieves enhanced security by
verifying three biometric factors closely integrated in the signing
process: the hand skeleton motion behavior, the inter-joint motion
behavior, and the individual hand geometry presented by the 3D
hand skeleton model. The algorithm can be deployed on any exist-
ing in-air signature verification systems. The system flow is shown
in Figure 3. The user initiates authentication by signing a 3D signa-
ture in the air, which is the same process as in prior in-air signature
works [8, 39]. The hand is detected and tracked by a single camera
(e.g., Leap Motion sensor or RGB camera). We then extract the 3D
coordinate time series of each hand joint and obtain the hand skele-
ton motion data, which describes the spatial and temporal dynamics
of the hand skeleton joints such as knuckles and fingertips. Thus,
different from the motion of a single finger-tip, the hand skeleton
motion data reflects the user’s unique hand geometry, the signature
curve of each joint, and the signing behaviors of the entire hand.

Our system first performs the 3D multi-joint motion data pre-
processing to address different hand sizes, camera view angles, and
sensor data lengths. In particular, we normalize the hand size and
the time/spatial span of the hand skeleton trajectory and rotate the
captured 3D hand to a reference orientation for alignment. After
normalization and alignment, the hand skeleton motion trajectories
are reconstructed in a 3D coordinate system. The core of our system
consists of two parts: the derivation of signing behavior features
and the CNN-based hand skeleton signature verification models.

Based on the reconstructed 3D hand skeleton motion trajectories,
we derive the user’s signing behavior at the skeleton-level and the
joint-level: (1) The three-view hand skeleton signature derivation first
projects the multi-joint trajectories onto three 2D planes, analyzing
the 3D hand skeleton movements from its front, side, and top views,
respectively. For each view, every joint trajectory is illustrated with
a distinct color. Moreover, color gradients (from light to dark) are
used to denote temporal information, and curve widths are used to
describe joint significance, which is calculated based on how unique
and independent joint moves regarding the entire hand skeleton.
(2) The inter-joint motion feature derivation calculates the distance
between every pair of hand joints to capture the minute inter-
joint movements associated with hand motions. The time series
of inter-joint distances thus describe the user’s joint-level signing

behaviors, which not only act as a liveness indicator to prevent
machine forgeries but also presents identifiable characteristics.

The two types of behavioral feature time series are fed into our
CNN-based hand skeleton signature verification model to construct
two user profiles. The CNN-based three-view signature model scru-
tinizes the three-view hand skeleton motions to authenticate the
user through the skeleton-level signing behaviors. The CNN-based
inter-joint motion verification model examines the inter-joint mo-
tion characteristics to verify the user and mitigate the replay threats
from motion-copy robots. We further develop a fusion model to
integrate the examination results from both the skeleton-level and
the joint-level to make the authentication decision. It is important
to note that the hand geometry features obtained from the 3D hand
skeleton model (i.e., the distance and angle relationships between
hand joints), are embedded in the above behavioral feature time
series and are implicitly verified by the above two CNN models.

3.4 Attack Models
The goal of an adversary is to spoof the target user’s identity to au-
thorize transactions or gain access to the user’s account to infringe
upon their privacy. To achieve this goal, the adversary needs to
forge the user’s in-air signature.We assume the adversary may have
either the user’s account information or the physical access to the
user’s devices (e.g., laptop) to initiate an in-air signature authentica-
tion session. Because our system is based on three biometric factors
(i.e., hand skeleton motion behavior, inter-joint motion behavior,
and 3D hand skeleton model), the adversary may be capable of get-
ting one, some, or all of the biometric data to cheat our system. For
example, in-air signing usually happens in public places and VR/AR
scenarios, which could leak skeleton-based model/trajectories to
a nearby hidden camera (2D or 3D). Then, the adversary could
observe the eavesdropped data to impersonate or use a robot to
replay. In particular, we consider two main types of attacks:

• Impersonation Attack: The adversary may obtain the
user’s name and signing behavior data (e.g., by observing
how the user signs an in-air signature during an authentica-
tion session). Based on that, the adversary could choose to
(1) sign the user’s name with a random signing behavior or
(2) practice hard to mimic the user’s behavior and attempt
reproducing the in-air signature.

• Robot Replay Attack:We assume a skilled adversary has
access to both the user’s 3D hand skeleton model and sig-
nature trajectory samples. In practical attacking scenar-
ios, the adversary could employ hidden cameras or infil-
trate the authentication database to gather this informa-
tion [21, 24, 37, 39]. The adversary can further employ 3D
printing technology to duplicate the user’s hand and attach it
to a robotic arm. The combination of 3D printing and robot-
ics enables the adversary to reproduce not only the signing
process but also the user’s 3D hand skeleton model, which
contains hand geometry biometrics.

4 APPROACH DESIGN
4.1 Hand Skeleton Motion Data Extraction
To maximize the user’s hand biometrics and counter replay threats,
we propose to augment the in-air signature with hand skeleton
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motions. A human hand comprises 27 bones, and its motion can be
uniquely represented by 21 landmarks or joints. These landmarks
include 20 phalangeal points (knuckles, fingertips, and joints) and
one carpal point indicating thewrist position, as depicted in Figure 4.
For example, Joint 0 represents the wrist, while Joints 4, 8, 12, 16, 20
represent the fingertips. These joints’ 3D coordinates form a unique
hand skeleton model for each individual and present hand geometry
information. We express the 3D coordinate of joint 𝑖 at time 𝑡 as
𝐽𝑜𝑖𝑛𝑡𝑖,𝑡 = [𝑥𝑖,𝑡 , 𝑦𝑖,𝑡 , 𝑧𝑖,𝑡 ]. Then the hand skeleton motion 𝑆 in a
time period 𝑇 can be uniquely described by a 𝑇 × 21 matrix of 3D
coordinates:

𝑆 =


𝐽 𝑜𝑖𝑛𝑡0,0 𝐽 𝑜𝑖𝑛𝑡1,0 𝐽 𝑜𝑖𝑛𝑡2,0 ... 𝐽 𝑜𝑖𝑛𝑡20,0
𝐽 𝑜𝑖𝑛𝑡0,1 𝐽 𝑜𝑖𝑛𝑡1,1 𝐽 𝑜𝑖𝑛𝑡2,1 ... 𝐽 𝑜𝑖𝑛𝑡20,1

... ... ... ... ...

𝐽 𝑜𝑖𝑛𝑡0,𝑇 𝐽 𝑜𝑖𝑛𝑡1,𝑇 𝐽 𝑜𝑖𝑛𝑡2,𝑇 ... 𝐽 𝑜𝑖𝑛𝑡20,𝑇

 (1)

This matrix representation of the hand motion contains rich bio-
metric information including the signature trajectory completed by
each hand joint, the signing behavior exhibited by each hand joint,
the hand geometry biometric presented by the 3D hand skeleton
model, and the inter-joint relationships.

Incorporating all hand joints for authentication introduces sig-
nificant complexity and burden to the authentication algorithm.
It can result in high redundancy, as certain joints exhibit strong
correlation and low independence. Additionally, the inclusion of
less significant joints may dilute the contribution of more important
joints, impacting authentication performance. As such, we propose
to examine the user’s 3D in-air signature based on a novel graphi-
cal representation, which projects the hand skeleton motion onto
three orthogonal planes and presents the temporal information and
joint significance in the resulting three views. We further derive
the inter-joint distance relationships based on the hand skeleton
motion matrix to capture the joint-level behavioral biometrics.

4.2 Multi-joint Data Normalization and
Alignment

When entering an in-air signature, the user’s hand presented to
the camera may be captured with different sizes and orientations.
The scale of the signature curve may not be consistent, and the
varying signing speeds and completion times also lead to the sen-
sor data with different lengths. We thus design the multi-joint data
normalization and alignment schemes to address the above vari-
ances. In particular, we align the starting palm orientations with a
predefined direction and then normalize the trajectory and hand
sizes. Furthermore, we select two intersecting inter-joint links to
represent the palm plane:

𝐿𝑖𝑛𝑘1 = 𝐽 𝑜𝑖𝑛𝑡9,0 − 𝐽 𝑜𝑖𝑛𝑡0,0, (2)

𝐿𝑖𝑛𝑘2 = 𝐽 𝑜𝑖𝑛𝑡13,0 − 𝐽 𝑜𝑖𝑛𝑡5,0, (3)

where 𝐿𝑖𝑛𝑘1 denotes the direction of the middle metacarpal bone.
The magnitude of 𝐿𝑖𝑛𝑘1,𝑡 at each time frame is chosen as a reference
and scaled to a constant value to standardize the size of the skeleton.

𝑠𝑐𝑎𝑙𝑒𝑡 =
1

|𝐿𝑖𝑛𝑘1,𝑡 |
(4)

To streamline the calculation, we postulate that 𝐿𝑖𝑛𝑘2 ⊥ 𝐿𝑖𝑛𝑘1,
meaning 𝐿𝑖𝑛𝑘2 symbolizes the projected vector component of the
link between 𝐽𝑜𝑖𝑛𝑡5 and 𝐽𝑜𝑖𝑛𝑡13, which is perpendicular to 𝐿𝑖𝑛𝑘1.
Importantly, the skeleton trajectories are rotated so that 𝐿𝑖𝑛𝑘1
aligns with the 𝑍 -axis and 𝐿𝑖𝑛𝑘2 with the 𝑋 -axis of the sensor coor-
dinate at the initiation of each signature. This alignment is achieved
through three rotations around the 𝑍 -axis and 𝑌 -axis. We select a
point on the 𝑍 -axis, designated as 𝑃𝑧 , such that ®𝐽9𝑃𝑧 ⊥ 𝐿𝑖𝑛𝑘1 and
the angles are calculated as per Equation (2) and (3):

𝜃1 = 𝑎𝑐𝑜𝑠 (
𝑃𝑟Π𝑥𝑦𝐿𝑖𝑛𝑘1 · ®𝑥

|𝑃𝑟Π𝑥𝑦𝐿𝑖𝑛𝑘1 | × | ®𝑥 | ) ), (5)

𝜃2 = 𝑎𝑐𝑜𝑠 (
𝑃𝑟Π𝑥𝑧𝐿𝑖𝑛𝑘1 · ®𝑧

|𝑃𝑟Π𝑥𝑧𝐿𝑖𝑛𝑘1 | × | ®𝑧 | ) ), (6)

𝜃3 = 𝑎𝑐𝑜𝑠 ( 𝐿𝑖𝑛𝑘2 · ®𝐽9𝑃𝑧
|𝐿𝑖𝑛𝑘2 | × | ®𝐽9𝑃𝑧 |

) ) . (7)

Following the rotations, the aligned matrix 𝑆 ′ is generated by:

𝑆 ′ = 𝑆 · 𝑅𝑧 (𝜃1 ) · 𝑅𝑦 (𝜃2 ) · 𝑅𝑧 (𝜃3 − 𝜋 ), (8)

where 𝑅𝑎𝑥𝑖𝑠 denotes the rotation matrix around an axis. The subse-
quent sections will delve into further normalization and transfor-
mation of the hand skeleton signatures.
4.3 Inter-joint Motion Feature Derivation
The inter-joint motions are the relative distance relationships be-
tween hand joints. Based on 𝑆’, we derive the inter-joint distance-
time array 𝐷 , which represents the spatial relationship between
every pair of joints and their change during the process when the
user completes a signature, as expressed by

𝐷 =


| 𝐽 𝑜𝑖𝑛𝑡0,0 − 𝐽 𝑜𝑖𝑛𝑡1,0 | ... | 𝐽 𝑜𝑖𝑛𝑡19,0 − 𝐽 𝑜𝑖𝑛𝑡20,0 |
| 𝐽 𝑜𝑖𝑛𝑡0,1 − 𝐽 𝑜𝑖𝑛𝑡1,1 | ... | 𝐽 𝑜𝑖𝑛𝑡19,1 − 𝐽 𝑜𝑖𝑛𝑡20,1 |

... ... ...

| 𝐽 𝑜𝑖𝑛𝑡0,𝑇 − 𝐽 𝑜𝑖𝑛𝑡1,𝑇 | ... | 𝐽 𝑜𝑖𝑛𝑡19,𝑇 − 𝐽 𝑜𝑖𝑛𝑡20,𝑇 |

 . (9)

In total,
(21
2
)
= 210 inter-joint distance time series are obtained to

describe the joint-level signing behaviors.
Figure 5 illustrates the inter-joint distances of all joint pairs and

their variations over time. We find that the distances between some
joints exhibit minimal or no variation over time. These joints are
mainly at the rigid body parts of the hand, such as the palm bones, or
are the joints whose movements are highly correlated. The joints of
the index finger present the highest inter-joint distance variations,
indicating the substantial relative motions of the index finger with
regard to the overall hand skeleton movements. Other finger joints
also present observable distance changes in reference to other hand
joints. Moreover, by comparing Figure 5a and Figure 5b, we show
that different users present different inter-joint distance patterns,
which can be used for distinguishing users. By comparing the inter-
joint motions of a user and the corresponding robot replay (e.g.,
Figure 5a and Figure 5c), we show that inter-joint motion features
are more observable in human data than in the robot replay data.
Thus, we use the inter-joint distance time series as both biometric
features and the liveness indicator.
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Figure 5: The varying inter-joint distances presented by in-air 3D signatures (210 joint pairs).
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Figure 6: The three perceptions of a LeapMotion captured 3D
signature when 1, 6, and 21 joints are used for illustration.

It is important to note that it is not necessary to examine all
210 inter-joint distances along time for authentication. More par-
ticularly, we create a personal inter-joint motion profile to only
include the joint pairs which are found to be more identifiable to
the user. The computation complexity is thus greatly reduced. Be-
fore constructing a per-user profile, we first apply interpolation or
down-sampling to unify the inter-joint distance time series length.
The distance values are normalized between 0 and 1.

4.4 Three View-based Biometric Feature
Presentation

We also construct the per-user hand skeleton signature profile with
its three-view derivations from hand skeleton motion matrix 𝑆’,
which contains both spatial and temporal information of the hand
skeleton-level signature.

Presenting Spatial Information. We draw the hand skeleton
signature in a 3D space using matrix 𝑆 ’. The signature trajectory is
centralized and normalized within a 1×1×1 bounding box. To fully
represent the hand skeleton’s motion, we observe the reconstructed
signature from the front, side, and top views, projecting the 3D
trajectories onto a plane to create an image, as depicted in Figure 6.
This allows us to observe joint trajectories that may be obscured
from one viewing angle from a different perspective. The three-
view projection translates the hand skeleton motion matrix into

three 180× 180 images, preserving the user’s behavioral biometrics
across all three dimensions.

Presenting Temporal Information. To differentiate the joints,
we assign each trajectory a distinct color. Moreover, prevent the loss
of dynamic biometrics in the image representation, we integrate
time information into the joint trajectories. We achieve this by
plotting with a gradient color scheme that transitions from light to
dark, effectively illustrating features like movement direction and
velocity. If a user’s movement is rapid over a certain period, the
corresponding segment of the trajectory will exhibit a steep color
gradient descent.

Joint Significance Estimation andWeight Assignment.Con-
sidering the complexity of human hand kinematics, simply illus-
trating the motion of all hand joints does not constitute an optimal
method for presenting skeletal behavioral biometrics. There are
two primary problems when attempting to depict the hand skeleton
signature for a large number of joints. If we plot all 21 joints and
generate three-view projection images, some trajectories invariably
overlay others. Furthermore, not all joints maintain consistent tra-
jectories during the signature enrollment phase. Certain jittering
may represent potential user-specific behavioral biometrics, while
others could be attributed to sensor noise or unintentional user
movements. These inconsistencies may relate to the user’s writing
style, or the limited precision of the motion-tracking device and
hand recognition algorithms during experiments. Therefore, we
estimate and utilize the significance of the 21 joints.

𝑟𝑎𝑛𝑘𝑖 =

20∑︁
𝑗=0

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ( | 𝐽 𝑜𝑖𝑛𝑡𝑖 − 𝐽 𝑜𝑖𝑛𝑡 𝑗 | ) (10)

𝑠𝑐𝑜𝑟𝑒𝑖 = 10 × 𝑟𝑎𝑛𝑘𝑖

𝑚𝑎𝑥 (𝑟𝑎𝑛𝑘0,1,2,...,20 )
(11)

We start by creating a joint significance ranking table for all 21
joints, setting an initial score of 0 for each. We then calculate the
variance for each inter-joint pair, as depicted in Figure 5d. A large
variance will occur if the distance between two joints changes
significantly while writing the signature. Conversely, a constant
distance between two joints results in a variance of 0. This variance
is added to the ranking for both joints in the pair. The final step
involves normalizing the sum of variances between 0 and 10 to
create a significance score, which is saved as per-user joint signifi-
cance ranking profiles. Specifically, Table 1, for instance, shows the
average significance score for each joint among 25 users. Although
each user’s joint significance rankings differ due to factors such as
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Figure 7: The CNN architecture of our verification model.

hand gestures, signature contents, and user habits, we observe that
𝐽𝑜𝑖𝑛𝑡8 has the highest average score among the 21 joints. This is
understandable since most users write with their pointing index
finger and curved palm, which is why many existing works choose
to use fingertip movement to represent 3D signatures.

By leveraging the user-specific joint significance, we can explore
deeper into the user’s behavioral biometrics in hand skeleton signa-
tures and enhance the user verification performance. Furthermore,
we can weight joint trajectories according to their significance rank-
ing, thus the higher-score joints have wider trajectory widths to
prevent blocking.
4.5 CNN-based Authentication Algorithm
Traditional in-air signature verification methods utilize the motion
of a single joint, usually the tip of the index finger. These methods
first extract features from the position and temporal information
and then identify the user based on these features using clustering-
based or distance-based algorithms, such as Support VectorMachine
(SVM) and DTW. In contrast, our approach leverages the motion of
all 21 joints and represents their behavioral biometrics in the form
of a three-view hand skeleton signature and inter-joint distance
time series. Therefore, we develop a CNN-based authentication

Table 1: The significance scores of 21 joints.

Joint Avg. Score Joint Avg. Score

0 1.82 11 3.22
1 2.23 12 4.62
2 2.55 13 1.02
3 3.59 14 1.40
4 4.51 15 2.28
5 0.75 16 3.09
6 1.57 17 1.35
7 4.43 18 1.47
8 8.38 19 2.01
9 0.78 20 2.41
10 1.40

algorithm for user verification. In this section, we detail outlines
the architecture of our proposed network model and discuss the
process of feeding the input into the model.

Our network model is designed as a binary classifier, consisting
of three components: the three-view hand skeleton signature learn-
ing model, the inter-joint motion learning model, and the model
fusion component. The first two generate skeleton-level and joint-
level user authentication confidence, while the fusion component
integrates the outputs to make the final verification decision. The
detailed architecture and model parameters are shown in Figure 7.
The per-user CNN model has two output classes, user and non-user,
which verifies the user against the claimed user identity.

Each image has 3 color channels, so the three-view images are
reshaped to have 9 RGB channels. The two feature learning models
have similar structures but are trained independently. The initial
part of these models is convolutional layers, which are crucial to
CNN designs. The kernels in the convolutional layer compute the
relationship between small, nearby portions of the input and derive
a value map by scanning the input hand skeleton motion matrix.
The output of these layers often contains high-level features like
significant areas of an image.

Following this, the dense layers calculate scores with fully con-
nected neurons. Each layer includes a Rectified Linear Unit (ReLU)
activation function to keep the scores above 0. The output are two
class scores determined by the last dense layer. A Sigmoid activa-
tion function is added after the final score to keep it between 0 and
1. These scores serve as the user authentication confidence for dif-
ferent features. Lastly, there is a model-level fusion that considers
both skeleton-level and joint-level user authentication confidences
to verify the users.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup
5.1.1 Experimental Platforms. To evaluate the effectiveness of
our proposed authentication system, we implement a hand skeleton
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Figure 8: In-air 3D signature capturing system.

tracking platform on a Windows PC. This platform includes two
different interfaces to study the performance of both scenarios: a
regular RGB camera (specifically, an ELECOMWebcam) and a depth
camera (Leap Motion). The setup of the experimental platform is
shown in Figure 8a. In this setup, a user is able to write a signature
in front of both cameras. The cameras are placed for easy access and
convenience for general use cases such as video meetings, similar
to the placement of a laptop’s webcam. Other placements such
as below the display [19], on the table [10], or on a tripod [38]
are also possible. Real-time feedback in the form of virtual hand
skeleton models is provided to the user on the monitor. The video
frames captured during this process are used to extract both the
user’s 3D hand skeleton signature and the traditional single-point
signature for purposes of comparison. As the majority of existing in-
air signature systems rely on DTW algorithms and various motion
features, including trajectory coordinates, velocities, accelerations,
moving variances, and multiple statistic features [8, 19, 39], we also
implement the in-air fingertip signature system that uses DTW and
incorporates the same features as our baseline for comparison.

More specifically, we use Google MediaPipe v0.8 to monitor the
hand captured by the webcam. This interface provides feedback by
generating a 2D hand skeleton superimposed on the hand image.
Although the webcam (operates at 30 fps) does not have the capacity
to provide depth information directly, MediaPipe estimates the
depth value of each joint based on its relative position to the palm
center and the individual hand skeleton model, while the depth
value of the palm center is fixed to be zero. Therefore, we can
acquire the relative 3D coordinates of each joint. In contrast, with
the depth camera (working at 110 fps), we use Leap Motion v5.4.1
to obtain the 3D coordinates of the hand’s all joints. The hand
skeleton collected is then reconstructed. However, instead of using
the user’s individual model, this interface bases the reconstruction
on a general hand model that adheres to standard proportions
between the joints.

5.1.2 Data Collection. We recruit 25 participants for our experi-
ments. They are asked to perform their signature in the air, using
the initials of their name and the writing style they were most com-
fortable with. Although most participants use their index finger to
sign, a few used two fingers or opted for a more relaxed or fully
stretched hand posture. Additionally, 17 participants are asked to
write out the letters “ABC”. This is done to examine their writing
behaviors more closely while standardizing the content of their
writing. Each participant repeats their in-air signature 40 times.
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Figure 9: Verification performances of two sensors.

These signatures are then divided into two halves, with one half
being used for training purposes and the other for testing. During
the training phase, 20 instances of the user’s signature are labeled
as those of a legitimate user, while 20 instances randomly selected
from other users’ signatures are labeled as non-user. This train-
ing and testing process is repeated 10 times for each user and is
averaged for presentation.

5.1.3 Attack Setup. We imitate three types of attacks according
to our attack models to evaluate the system’s ability to withstand
human impersonation attempts and robot-level motion replays.

Impersonation Attack. We choose five experienced partici-
pants to act as impersonation attackers. Their task is to observe
how the target participants signed their names, then try to mimic
both the signatures and the signing behaviors of the targets.

Physical Robot Replay. We employ a 3D scanner and a 3D
printer to forge an exact replica of a user’s hand, matching the
original in terms of palm size, hand shape, and finger dimensions.
Since the replica hand is an exact match, conventional hand image
recognition methods might struggle to differentiate between the
real hand and the fake one [41]. We then attach it to a PincherX 150
robotic arm as shown in Figure 8b, and program the fake hand’s
palm center to follow the same movement trajectory as the user’s
palm center, to reproduce the 3D hand skeleton signature.

Simulated Robot Relay. Physical robot replays have their limi-
tations, including the robot’s motion resolution, quantization errors,
degrees of freedom, and task planning capabilities. To circumvent
these limitations, we perform simulated robot replays using Python.
This allows us to create a virtual hand model that precisely followed
the user’s hand motion data. We created two types of simulated
attack scenarios based on whether or not the attacker is able to
access the user’s hand biometrics: 1) We create a 3D virtual hand
model based on a general 3D human hand model. This virtual hand
is moved in such a way that its palm center is aligned with the
target user’s palm center trajectory. The multi-joint motion data are
collected during this process; 2) We further assume the adversary
obtains the target user’s hand model. The simulated attack is then
executed by moving the virtual hand (created using the obtained
hand model) along the user’s palm center trajectory.

5.1.4 Evaluation Metrics. The metrics we use to evaluate our
authentication system include false acceptance rate and the F1 score
combining precision and recall of classification results. Specifically,
we calculate these metrics based on the number of true positive𝑇𝑃 ,
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Figure 10: Verification Performance of different features.

false negative 𝐹𝑁 , false positive 𝐹𝑃 , and true negative 𝑇𝑁 :

𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 (12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(15)

5.2 User Authentication Performance
5.2.1 General User Verification. We first present the user veri-
fication result of 25 users. As seen in Figure 9, our system performs
well with both types of motion capture devices, the 3D depth cam-
era, and the 2D RGB camera, obtaining high F1 scores of 0.981 and
0.983 respectively. The result suggests that our system can effec-
tively operate with different motion capture devices. Interestingly,
the 2D RGB camera achieves an F1 score that is very close to the one
achieved with the 3D camera. This suggests that the relative depth
value, capable of illustrating changes in hand gestures, can be incor-
porated as a unique third-dimensional feature for user verification,
augmenting the 2D signature.

5.2.2 Feature Significance. Next, we analyze the significance of
two types of signing behavioral features: 3D hand skeleton motion
features and inter-joint motion features, referred to as "Joints" and
"Inter-joint" respectively. We also implemented a prior 3D signature
verification method that uses a single fingertip [39] for comparison.
The results, presented in Figure 10, show that our system attains an
F1 score of 0.967 when solely using the 3D hand skeleton motion
features. While this is slightly lower than the score achieved when
combining both types of features, it is comparable to the existing
single-point signature method. This suggests that our 3D hand
skeleton signature alone is adequate for standard user authentica-
tion scenarios. Utilizing only the inter-joint motion features yields
an F1 score of 0.762, indicating that while these features do offer
unique biometric information, they alone are not sufficient for user
identification. The integration of both types of features enhances
authentication performance.

5.2.3 Writing The Same Word. We now concentrate on the
participants’ dynamic signing behaviors, disregarding the signa-
ture geometry as confidential. In particular, we ask the participants
to write the common letters “ABC”, simulating practical scenar-
ios where people share the same names. The system’s verification
performance, illustrated in Figure 11, demonstrates an F1 score of
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Figure 11: Distinguish users when they write the same word.

0.986. This score is similar to the general user verification perfor-
mance highlighted earlier, confirming the efficiency of our system
in verifying the user’s hand skeleton-level signing behaviors as
opposed to signature curves. When utilizing only the hand skele-
ton motion features, the F1 score is 0.982. This score is not only
comparable to the one attained when using both types of features,
but it also surpasses the performance of the single-point signature
method [39]. Of note is the observation that writing “ABC” yields a
slightly higher F1 score than writing name initials (i.e., two letters),
suggesting that longer word lengths, such as full signatures, could
lead to improved verification performance.

5.2.4 Training Effort Study. We also evaluate the impact of
training data size on the verification performance of our system,
which is related to the training efforts required from each enrolled
user when deploying the system in practical scenarios. Figure 12
presents the verification performances when the user enrolls in our
system with 2 to 20 signatures, respectively. We observe that in-
creasing the training data size improves the system’s performance.
Specifically, the F1 score of our system improves significantly when
increasing the enrollment signatures from 2 to 5. In particular, our
system achieves over 0.9 F1 score with 5 enrolled signatures. The
high performance we achieve with a small training data size from
an enrolled user indicates the potential of deploying our system
practically to provide authentication services. The main reason is
that the hand skeleton motion data contain much richer behav-
ioral biometric information than that of a single joint. The F1 score
continues to increase to 0.95 when 10 signatures are obtained for
enrollment, while the increasing trend becomes slow. When 20 sig-
natures are requested from the user for model training, our system
achieves 0.981 F1 score. While more training data brings perfor-
mance improvement, it also requires higher enrollment efforts. Our
future work will further reduce the individual training efforts by
utilizing data augmentation. For example, we can use translation,
rotation, and scaling to augment the training data size from limited
enrolled signatures.

5.3 Impersonation Attacks
When an adversary only knows the user’s name and is not aware
of the signing behavior, our system’s verification performance is
comparable to the results reported in Section 5.2.3. In this subsec-
tion, we study the knowledgeable impersonation attacks, where
the adversary knows the user’s signature and signing behavior.
Figure 13 presents the false acceptance rate of our system under
knowledgeable impersonation attacks. Our system achieves a 2.04%
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Figure 12: Impact of training data size.

false acceptance rate, which is much lower than the 27.5% rate
reported by the single-point signature work [39]. The difficulty in
distinguishing single-point signatures from knowledgeable human
forgeries stems from two main reasons: 1) The single-point signa-
ture is relatively easy to imitate by an adversary. 2) The single-point
signature suffers highly from the visual tracking errors incurred
by occlusion or self-occlusion. Differently, our 3D hand skeleton
signature leverages multiple joints to compensate for the partially
occluded hand and examines hand skeletons’ inherent behaviors.

5.4 Robot Replay Attacks
We evaluate the performance of our system to defend against robot
replayswith both a physical robotic arm platform and two simulated
robot attacks. Figure 14 illustrates the performance of our system
and compares it with the existing single-point signature method
when a physical robot is used to replay. The robot is attached
with the 3D-printed user hand, which is expected to replicate the
user’s hand skeleton motion features and hand geometry biometric.
We observe that the conventional in-air signature authentication
struggles with a high false acceptance rate of 32.2% when facing
robot-level replays. In comparison, our system rejects 100% of robot-
level replays. The result indicates that the current low-cost robotic
arm has sufficient motion-copy capability to replay a user’s in-air
signature. However, our system successfully counters these attacks
based on examining the hand skeleton’s signing behaviors. When
only checking the hand skeleton motion features, our system still
achieves a low false acceptance rate of 2.5%. The inclusion of inter-
joint motion features further enhances the system’s resistance to
replay attacks.

It is important to note that the low-cost robotic arm we imple-
mented still has the limited capability to repeat the user’s signing
behavior. This is largely due to the fact that the robot operates
on discrete control commands and possesses only a 5 Degree-of-
Freedom (DoF), which results in the quantization errors and the
limit to reach everywhere a human arm can reach. Furthermore, the
motion capture device also introduces noise and distortion. Though
using a more advanced robotic arm (e.g., equipped with a 7 DoF and
superior motor resolution) achieves a higher accuracy of copying
the user’s hand motions, it is sill not enough to understand maxi-
mized attack. We thus simulate two types of robot replay attacks in
software to explore the extent our system can achieve to prevent
robot replays. In the simulations, the impacts from the motion cap-
ture device (when tracking the robotic arm) and the robot motor’s
quantization error and resolution are removed.

0.020

0.051

0.275

Joints + Inter-joint Joints Work [39]
0

0.05

0.1

0.15

0.2

0.25

0.3

F
a
ls

e
 A

c
c
e
p

ta
n

c
e
 R

a
te

Figure 13: Performance under impersonation attacks.

Figure 15 presents the performance of our system under a simu-
lated robot replay that uses a generic hand model, which is expected
to replay the hand skeleton motions. For the traditional single-point
signature method, we find that the simulated replay attack leads
a 96.8% false acceptance rate, which is the upper limit a physical
robot replay could achieve. The result indicates that the traditional
method cannot differentiate between a user’s in-air signature and
its simulated replica based on single-point motions. In comparison,
our system achieves a significantly lower false acceptance rate of
0.2% under the simulated robot replay attack. This is because the
attack is hard to replicate the joint-level motions.

Furthermore, we explore a more challenging attack scenario
where the simulated replay attack employs a scanned 3D model of
the user’s hand rather than a generic hand model. This virtual hand
model presents the same inter-joint geometries, hand shape, and
finger widths/lengths. Figure 16 presents our system’s performance
under this advanced replay attack simulations. We find our system
is still effective in defending against such attacks, maintaining a low
false acceptance rate of 0.2%. The result confirms the robustness
of our system against replay attacks, which is based on examining
the joint and inter-joint motion features.

6 DISCUSSION AND FUTUREWORK
This work investigates the behavioral biometric security under the
emerging robot-level replay threats. We implement the existing
single-point in-air signature method [39] and conduct compari-
son studies in both normal and attack scenarios. Our experimental
evaluation confirms the effectiveness of the single-point signa-
ture authentication in normal scenarios. By including the inherent
behaviors of multi-joints, our system achieves a 1.5% improve-
ment in normal authentication scenarios. But under robot-level
replay attacks, we show that the traditional single-point signa-
ture verification is easy to be tricked by robot-level replay attacks.

Table 2: Performance of our method under replay attacks.

Attacking Scenarios
False Acceptance Rate

Work [39] Our Method
Depth Cam. Depth Cam. RGB Cam.

Impersonation 0.275 0.020 0.027
Robot + 3D-print 0.322 0 0
Sim. Generic Hand 0.968 0.002 0.003
Sim. User’s Hand 0.968 0.002 0.004
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Figure 14: Under robot replay attackwith
3D-printed user hand models.
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Figure 15: Under simulated replay attack
with general 3D hand skeleton models.
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Figure 16: Under simulated replay attack
with the user 3D hand skeleton models.

In comparison, our system achieves a 96.6% improvement in the
verification performance to reject the replayed signatures while ac-
cepting the legitimate signatures. The comprehensive comparison
results demonstrate the effectiveness of our system in providing
replay-resistance signature verification services to face the threats
of emerging motion-copy robots.

While our focus lies on the 3D in-air signature, the proposed
authentication system and the motion-copy robot platform have
the potential to be extended for 2D signatures on touchscreens and
other behavioral biometrics. Some studies incorporate the writing
pressure as a biometric feature in addition to the signature trajec-
tory, implying security. However, a robot’s haptic feature could
potentially manipulate the pressure data while replicating the 2D
signature. The commercial Kinect sensor also facilitates hand/body
skeleton tracking and in-air signature [39]. Although Kinect can
only display 4 skeleton joints of a hand, it captures 25 skeleton
joints across the user’s entire body. Therefore, our system could
be extended to validate the body skeleton motions when a user
executes an in-air signature. Additionally, our system relies on the
ability of current commercial hand-tracking interfaces to function
under low light conditions, an area extensively researched by vi-
sual sensing studies but outside this paper’s scope. Furthermore,
numerous 2D cameras feature a night vision mode employing in-
frared LED light, and 3D depth cameras use infrared light for active
sensing, both functioning effectively under low light conditions.

The potential for robot-level signature replay extends beyond
commercialized visual sensing interfaces and can incorporate other
sensors such as wearable inertial sensors and wireless sensors such
as wearable inertial sensors and wireless sensors (e.g., WiFi and
acoustic). As an illustration, a robot can interface with inertial sen-
sors to generate data analogous to that used in behavioral biometric
authentication. Machine-level replay attacks on wireless sensors
can occur via the injection of manipulated RF signals and acoustic
sounds, though not using robotic arms. As robotics improve, we
foresee an escalating threat to behavioral biometrics. Therefore,
continued research is paramount to both investigate these replay
threats and secure behavioral biometric-based authentication.

An alternative approach could involve integrating liveness de-
tection with behavioral biometrics, thereby avoiding modifications
to the already deployed authentication systems. Image recogni-
tion methods, for instance, can be utilized to differentiate a human
hand from a mechanical robotic arm, as demonstrated in Figure 8.

However, such distinctions can be complicated if the robotic arm
is concealed by clothing to hide its joints, or if the attached arti-
ficial hand is difficult to discern from a real hand based on image
analysis alone. While infrared cameras can be added for liveness
detection, the associated overhead is substantial. Conversely, we
believe that by extracting the minute human motion behaviors,
such as the inter-joint motions, we can extend the security lifes-
pan of behavioral biometrics by another two decades. Given that
our three-view projections of the 3D hand skeleton signature con-
tain inter-joint motion information, future research will strive to
maximize the utility of these three-view hand skeleton images and
further investigate joint-level features.

7 CONCLUSION
This work introduces a 3D hand skeleton signature verification
system to address behavioral biometric security under the threat of
emerging motion-copy robots. We find that the hand skeleton-level
signatures and joint-level motions demonstrate great resilience to
robot replays compared to the traditional single-point signatures
(fingertip or palm center). We develop a CNN-based algorithm to
augment the security of in-air signatures that are obtained by two
types of commercial visual sensing interfaces. Specifically, we pro-
pose a novel presentation method to depict hand skeleton motions
in projected three-view images, assigning each joint trajectory a
unique color. The color gradient elucidates the temporal informa-
tion, while the line width of the curve highlights the individual
joint’s significance. Additionally, we compute the distances be-
tween all joint pairs, employing the inter-joint distance time series
to illustrate inter-joint motions. We also develop a CNN-based al-
gorithm to learn from these two types of signing behavior features
for authentication. For evaluation, we develop a real robotic arm
platform with a 3D-printed hand to launch robot replay attacks and
also explore the theoretical attack performance based on simula-
tions. Experimental results show that our system matches the user
authentication performance of existing in-air signature methods
while thwarting 100% physical robot replay attacks.
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